TAILORING OF ATOMIC-SCALE INTERPHASE
COMPLEXIONS FOR MECHANISM-INFORMED
MATERIAL DESIGN

SIMS diffusion measurements in Cu and Cu alloys



The growing realization that grain boundaries can sustain a series
of phases (interphases) in their own right (called interphase
complexions, ICs or complexions), which are only a few atomic
layers thick and which can undergo a variety of coupled structural
and chemical transitions ((i.e., IC transitions)

The excitement of this discovery 1s the promise to design and
match the type of IC structure to the demands of different
applications, since indications are that the properties are highly
sensitive to the IC type.

The availability of new instrumentation, such as the latest
generation of high resolution aberration corrected scanning
transmission electron microscopes, makes 1t possible to resolve

and directly observe for the first time the atomic structures of
ICs.



The kinetics of grain boundary diffusion will clearly be highly
sensitive to the grain boundary structure (and hence the nature of
the complexions present).

Our project 1s to survey the transport properties of a large number
of boundaries by using SIMS to map the concentration of a
diffusing species.

By comparing the penetration depth as a function of grain size,
metal composition and heat-treatment, the role of complexion
type in determining the grain boundary transport will be revealed.



Secondary lon Mass Spectrometry (SIMS)

In secondary ion mass spectrometry (SIMS) a focused 1on beam 1is
directed to a solid surface, removing material in the form of neutral and
ionized atoms and molecules. The secondary ions are then accelerated into
a mass spectrometer and separated according to their mass-to-charge ratio.
This allows for sensitivity in parts per billion for many elements and can
perform depth profiles with minimum 3 nm depth resolution.
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Research Work:

® Au Atoms diffusion along nano-crystal grain
boundary by SIMS

Au 1n pure nano-crystal and micro-Cu

(grain size effect)

Au 1 nano-Cu-W alloy (chemical environment effect)
Au 1n 1rradiated Cu-W alloy (GB microstructure effect)
Au 1n B1 GB-doped Cu

Constant source experiments (have been compared w/
Instantaneous source in several cases)

® Microstructures and chemical compositions by
HREM, STEM, EDS
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Equations for Fitting Diffusion Data

Type B: Instantaneous Source  sD,,d = 1.308; /?(_55/526/5)—5/3

Type B: Constant Source

Type C: Instantaneous Source

Type C: Constant Source

Mobile Grain Boundaries
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For example: Au (100nm)/Cu(200nm) Annealed at 373K 1Hr
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Pure copper

* Pure copper is the reference state to compare
with the Cu-Bi system

* As-deposited nanograined samples were
compared with annealed samples to look for
indications of any size effects. Size effects at
grain boundaries may be suggested by the
AGG (GB relaxation?) that these samples
typically undergo between ~200-300C.
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Au coating on pure Cu (as-deposited) annealed at three temperatures



Bright-field TEM image of pure Cu as-deposited (Twinning and Grain size )



t and wider GB
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Au-enriched wider GB: GB immigration evidence (Z-contrast) at 473K
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Au-enriched wider GB: GB immigration evidence (Z-contrast) at 473K



Au-enriched wider GB: GB immigration evidences at 473K
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Au diffusion profile in Cu-773K pre-annealed



0.5 um
Cu-773K pre-annealed matrix (high density of dislocation-network)




Z-contrast of Au diffusion leakage to dislocation-network from GB




Z-contrast of Au diffusion leakage to dislocation-network from GB
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Bi-doped Cu

* Characterizing transport kinetics with
expectation that analogous GB complexion
phenomena will exist in Cu-Bi as Ni-Bi

 Samples pre-annealed near, not in contact
with, Bi source at 500C and 900C
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Concentration

Concentration

1173 Pre-annealed with Bi
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10 nm

Bi diffusion along pure Cu GB Z-contrast (bright GB: Bi-enriched)



Cu-Bi annealed at 900°C for 1hr (Z-contrast)



No bright contrast shown at these three GBs and triple joint point



Bright contrast shown at some GBs



Bright contrast shown at some GBs



Bright contrast shown at some GBs



Bright contrast shown at some GBs



Low dislocation density in the 1173K pre-annealed Cu
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Notes about plot on previous slide

As deposited Cu films need to be scaled to grain growth rate not lattice
diffusivity from the Leclaire function. This is being measured now

The grain boundary diffusivity of the dislocation free pure Cu data for the
sample pre-annealed at 900C is taken to be representative of the GB
diffusivity of the sample pre-annealed at 500C. From this the dislocation
diffusivity is extracted, which agrees reasonably with the literature (at
High temp)

The nanograined material with tungsten is also not scaled appropriately,
yet because an appropriate effective diffusivity of the near surface ‘matrix’
must be calculated appropriately. Currently the lattice diffusivity is used,
but is not correct.

The data for the bismuth doped samples and Cu pre-annealed at 900C are
fit with the error function and there is no concern about any multiplication
factor that affects the value of diffusivity (other than the segregation
constant and boundary width).

We are currently working on making sure that all of the data are fitin a
manner that is consistent with the observed microstructures before and
after annealing (which has generally not been done in much of the
literature).



W-doped Cu

* This system was considered because the as-irradiated
samples display disordered grain boundaries. The
hope was to contrast this against ordered grain
boundaries, and equilibrium GB complexions.

* Unfortunately, the boundaries recrystallize during the
diffusion annealing

 However, they are still good reference for samples for:
(a - the as deposited film) a system with a non-
equilibrium GB composition that is reasonably high,
and (b - the as irradiated sample) a system that has a
relatively low (close equilibrium) segregation level.
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Cu-1%W as-deposited: grain size ~20nm
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Cu-1%W as-deposited: grain size ~20nm




Grain boundary width ~1nm, with various crystallography orientations




0 nm

(Z-contrast) Cu-1%W 473K annealed (No obvious grain growth and

nrecinitation)
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Irradiated Cu-1%W, grain growth ~80nm and lots of nano-precipitations (black spots)



(Z-contrast) Irradiated Cu-1%W, high density of W-nanoparticles and dark GB



Bright spot: Ion irradiation induced W-nanoparticles distribute uniformly
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Nano-type C: (Z-contrast) Au diffusion along irradiated Cu-1%W GB
(bright spot: W-nanoparticles, bright GB: Au-enriched)



Cu-1%W after irradiation GB in Disorder Structure



Amorphous GB

Cu-1%W after irradiation GB in Disorder Structure




Au Diffusion in Cu-1%W after irradiation
at 473K GB 1n Ordered Structure




Au Diffusion in Cu-1%W after irradiation
at 473K GB in Ordered Structure
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Au Diffusion in Cu-1%W after irradiation
at 373K GB in Ordered Structure
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