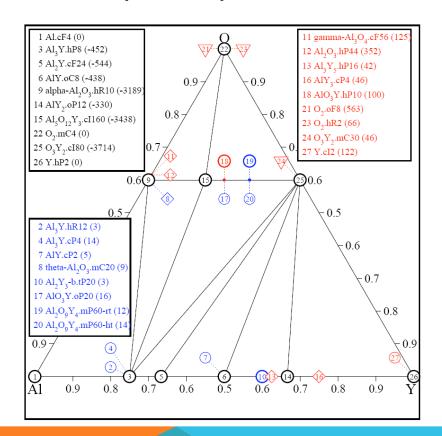
Ab initio and thermodynamic investigations of complexion-forming systems

Plan of work:

Create database of physical properties from first-principles Fit parameterized potentials Deliver potentials for molecular dynamics simulations Utilize potentials for complexion phase diagram prediction


Year 1:

Develop two- and three-body potential for alumina Begin study of complexion thermodynamics and phase diagrams Years 2&3:

Develop EAM-type potentials for metallic systems such as Ni-Bi Explore classical liquid DFT-based approach to phase field models Continue study of complexion phase diagrams

Ab initio and thermodynamic investigations of complexion-forming systems

Enthalpies of formation example: Y-doped alumina

Elasticity example: α -Al₂O₃

Elastic constant (GPa)	Experiment (T=25 C)	Calculation (T=0 K)
C11	498	562
C12	163	192
C13	117	159
C14	-23	19.7
C33	502	549
C44	147	176
C66	167	185