The Influence of Contamination on the Thermal and Phase Stability of Nanocrystalline Ni-W Alloys

Chris Marvel, Denise Yin, Patrick Cantwell, Martin Harmer

International Workshop in Interfaces at Bear Creek 2015

Grain Boundary Velocity

Must stop

grain growth!

Energetic

GB Mobility

GB Velocity

Grain Growth Driving Forces

Physical

Koch CC, Scattergood RO, Saber M, Kotan H. J Mater Res 2013;28:1785.

1-4 at.% Zr Fe–Cr 0.65 3.6 at.% P 0.34 Ni 5–20 at.% F 0.36 - 0.42**RuAl** ~ 15 at.% Fe

Ni-W and Ni-P Alloys

1.1 at.% P

1-4 at.% Zr

0.34 mol% Ca

Material

Ni

Co

Fe

Y

 TiO_2

thermodynamic mechanism of solute segregation to grain boundaries. Maximum T/T_m Solute addition 0.49, 0.58 6. 13 at.% W

0.42

0.55

< 0.55

0.59-0.65

Reference

31, 32

24

30

33

29

35

36

37

TABLE II. Thermal stabilization of nanocrystalline materials by the kinetic mechanism of Zener Pinning by nanoscale particles.

Material	Particle	Maximum $T/T_{\rm m}$	Reference	
Al (99.9%)	Al_2O_3 , $Al_4C_3 \sim 5$ nm	0.78	43	
Fe-10 wt% Al	Al_2O_3 , AlN	>0.68	40	
Fe-10 wt% Al	Al_2O_3	0.75	44	
Cu-5 at.% Zr	ZrO_2 , $ZrC \sim 8 nm$	0.86	42	
Al-7.5 wt% Mg	Al_2O_3 , Al_4C_3	0.78	45	
Al ₉₃ Fe ₃ Ti ₂ Cr ₂	Al ₆ Fe, Al ₁₃ Fe ₄ , Al ₃ Ti, Al ₁₃ Cr ₂	0.77	41	
Mg-12 wt% Cu	Mg_2Cu	0.76	46	
Cu–at.% Nb	Nb	0.86	47	

Two Strategies

"Thermodynamic"

TABLE I. Thermal stabilization of nanocrystalline materials by the

"Kinetic"

Processing Impurities

Natter H, Hempelmann R. Electrochim. Acta 2003; 49

Coatings Technol. 2012; 206

t _{on} (ms)	t _{off} (ms)	
-	_	
-	-	
-	_	
2	8	
5	95	
2	8	
		_
0	S	Cl
(ppm)	(ppm)	(ppm)
25	<1	<1
$\approx \! 400$	6	×230
\approx 1000	25	×1000
20	<1	<1
$\approx \! 400$	2	×180
\approx 1000	11	×1000

Modified from Savall C, Godon A., Creus J, Feaugas X. Surf.

Impurity Sulfur in Ni

420°C - 11 Hr

Grain Boundary EDS

G.D. Hibbard, J.L. McCrea, G. Palumbo, K.T. Aust, U. Erb, Scr. Mater. 47 (2002) 83–87.

How often does segregation increase grain growth rate?

Ni-W Background

Detor AJ, Schuh CA. Acta Mater 2007;55:371.

M.A. Atwater, K.A. Darling. ARL Tech Report ARL-TR-6007 2012.

		-						
		0.73	3	17	.8			
		44.3 -3				33.		
	Tungsten					Rh		
	0.62 19.9					Ar Argon Cr Kr		
1 ium 18.7	SIL		0		.00 92	Te Tellurium	I	Xe
-5	52.3 7 Au	51.4 8 Hg Mercury	T1 Thallium	Pb Lead	144.8 10 Bismuth	Po Polonium	At Astatine	Rn Radon
15.8 š dtium	Rg Roentgenium	Unub Ununbium	Uut Ununtrium	Ununquadium	Uup Ununpentium	Uuh Ununhexium	Uus Ununseptium	Uuo Ununoctium
-3 1 ium	-31 Gd Gadolinium	-32 Tb Terbium	-32 Dy Dysprosium	-31 Ho Holmium	-34 Er Erbium	-34 Tm Thulium	-7 Yb Ytterbium	-36 Lu Lutetium
a ium	Cm Curium	Bk Berkelium	Cf Californium	Es Einsteinium	Fm Fermium	Md Mendelevium	No Nobelium	Lr Lawrencium

Ni-W Phase Diagram

Turchi PEA, Kaufman L, Liu ZK. Calphad Comput Coupling Phase Diagrams Thermochem 2006;30:70.

Electroplated Ni-W: Initial Analysis

Several unknown phases → **Do not match phase diagram**

Bright phase is Ni₆W₆C

Ni₆W₆C is misidentified as intermetallic NiW

Ternary DFT phase diagrams

Ni_6W_6C (and others) in sputtered films

Impurity phases may be more common than realized

Ar pores pin grain growth?

Dark phase is W-rich oxide

Nanoscale oxides pin grain growth?

Grain Radius ≈ 30 nm Particle Radius $\approx 3 \text{ nm}$ Measured Volume Fraction $\approx 3\%$

What volume fraction do we need? $=\frac{3nm}{150nm}=2\%$

$$f_{critical} = \frac{r}{5R} = \frac{r}{5R}$$

R.D. Doherty, Mater. Sci. Forum 715-716 (2012) 1–12.

WOx Segregation

Finding the oxides

Focused TEM-BF Underfocused TEM-BF

STEM-HAADF

Search for W-segregation

As-Deposited

2 nm

700°C

Ni₄W nucleate from W-rich boundaries?

A few open questions...

- 1.Is Ni-W an isolated example?
- 2. How pure is pure and do we care?
- 3. Can we dope nanograin materials with "impurities"?
- 4. Do we trust our computational models?
- 5. Are all nanocrystalline grain boundaries equal?
- 6. Can we truly characterize nanocrystalline microstructures?

