Interfacial Phases & Transport Kinetics

Shen J. Dillon

Interfacial Kinetic Engineering

Slow Boundaries

Curtis Scott, et al., JACerS, 2002

German, Munir, Met. Trans. A, (1974)

Linking Thermodynamics & Kinetics

Comparing Complexions (Δ H & Δ S)

 $\Delta \gamma = \Delta \rho [RTIn(ga_{I}^{2}\nu_{I}^{*}/g\kappa_{II}a_{II}^{2}\nu_{II}^{*}) - T(\Delta S_{f,I}^{-}\Delta S_{f,II}^{-}) + (\Delta H_{f,I}^{-}\Delta H_{f,II}^{-}) + (\Delta H_{m,I}^{-}\Delta H_{m,II}^{-})]$ Simplifying Assumptions: $\Delta \gamma = \Delta \rho [-T(\Delta S_{I}^{-}\Delta S_{II}^{-}) + (\Delta H_{I}^{-}\Delta H_{II}^{-})]$

Check: $\gamma = \rho [RTIn(ga_b^2 v_b^*/g\kappa_l a_l^2 v_l^*) - T(\Delta S_l - \Delta S_b) + (\Delta H_l - \Delta H_b) + (P\Delta V_l - P\Delta V_b)]$

Early Tests of Borisov Model

Sample Preparation and Testing

Bi-doped Ni

Low Temperature 300°C

High Temperature 700°C

Cu diffusion into Bi doped Ni Matrix

Cu diffusion into Bi doped Ni Matrix

Δ S~4k (assuming entropy only) $\Delta\gamma$ ~0.3-0.5 J/m²

 Table I.
 The Mean Relative Energies of Different Grain-Boundary Complexions Occurring as Normal and Abnormal Grains in Doped and Undoped Alumina Annealed at Different Temperatures

Chemistry	Temperature (°C)	Complexion	Relative energy	% energy change (complexion transition
Undoped	1400	II (NGG)	1.11	
	2020	II (NGG)	1.08	
100 ppm-Nd ₂ O ₃	1400	I (NGG)	0.95	-16
	1400	III (AGG)	0.8	
100 ppm-Y ₂ O ₃	1400	I (NGG)	0.57	-46
	1400	III (AGG)	0.31	
500 ppm-MgO	1400	I (NGG)	1.07	-26
	1700	III (NGĠ)	0.79	
30 ppm-CaO	1200	I (NGG)	0.82	-20
	1200	III (AGG)	0.69	
200 ppm-SiO ₂	1200	I (NGG)	0.68	-10
	1200	III (AGG)	0.61	

Dillon et al. JACerS 2010

Comparison with Other Samples/Systems

μm

Experimental Approach

 $\Delta \gamma = \Delta \rho [RTln(ga_{l}^{2}v_{l}^{*}/g\kappa_{ll}a_{ll}^{2}v_{ll}^{*}) - T(\Delta S_{f,l} - \Delta S_{f,ll}) + (\Delta H_{f,l} - \Delta H_{f,ll}) + (\Delta H_{m,l} - \Delta H_{m,ll})]$ Simplifying Assumptions: $\Delta \gamma = \Delta \rho [-T(\Delta S_{l} - \Delta S_{ll}) + (\Delta H_{l} - \Delta H_{ll})]$ Approach:

Interfacial Thermal Conductance - Approach

Bicrystal Samples

Interfacial Thermal Conductance

Misorientation Effect on Kapitza Resistance

*Smith et al. JACerS (2003)

Comparison with Read-Shockley

T.C. & Grain Boundary Defects (Graphene)

Future Work: Doped Bicystals & Complexions

Kinoshita, Acta Mater. (1997)

Oxygen Diffusion in Al₂O₃

Preliminary Tracer Diffusion

Preliminary Lattice Diffusion

Paladino Kingery (1962) => D_{al} =1.7x10⁻²² m²/s at 1100°C (Extrapolated from 1670°C) Moya et al. (1995) => D_{cr} =1.1x10⁻²¹ m²/s at 1100°C

Preliminary Al₂O₃ Diffusivity Results

Conclusions

 Kinetics indicate G.B. complexion transition in Ni-Bi system (similar Cu-Bi)

Kinetics indicate significant entropy contribution

- Kapitza resistance scales with G.B. energy for low angle boundaries
- Preliminary results suggest cation diffusion (G.B. and lattice) not strongly sensitive to complexions/dopants