Research in Next 6-12 Months

- G.B. thermal conductance in doped samples
 - Bi crystals
 - Polycrystals
- Continue Diffusion in Al_2O_3 (Cr³⁺, O^{2-, 18}) – Approximate ΔS
- Diffusion in Ni-W
 - Borisov Model $\Delta H_{GB} \sim \Delta H_L \gamma$ (w/o complexions)
 - Complement Lehigh/Clemson-UCSD work

Defects in Alumina

Atkinson, JECerS 2003

Defects in Alumina

Fraction of mobile defects in Si⁴⁺ at 1400 ~10⁻¹¹

Alumina Diffusion - Motivation

 Table I.
 The Mean Relative Energies of Different Grain-Boundary Complexions Occurring as Normal and Abnormal Grains in Doped and Undoped Alumina Annealed at Different Temperatures

Chemistry	Temperature (°C)	Complexion	Relative energy	% energy change (complexion transition)
Undoped	1400	II (NGG)	1.11	
	2020	II (NGG)	1.08	
100 ppm-Nd ₂ O ₃	1400	I (NGG)	0.95	-16
	1400	III (AGG)	0.8	
100 ppm-Y ₂ O ₃	1400	I (NGG)	0.57	-46
	1400	III (AGG)	0.31	
500 ppm-MgO	1400	I (NGG)	1.07	-26
	1700	III (NGĠ)	0.79	
30 ppm-CaO	1200	I (NGG)	0.82	-20
	1200	III (AGG)	0.69	
200 ppm-SiO ₂	1200	I (NGG)	0.68	-10
	1200	III (AGG)	0.61	

Relative Grain Boundary Energies

Chemistry	Temperature (°C)	Complexion	Relative energy	% energy change (complexion transition)
Undoped	1400	II (NGG)	1.11	
	2020	II (NGG)	1.08	
100 ppm-Nd ₂ O ₃	1400	I (NGG)	0.95	-16
	1400	III (AGG)	0.8	
100 ppm-Y ₂ O ₃	1400	I (NGG)	0.57	-46
	1400	III (AGG)	0.31	
500 ppm-MgO	1400	I (NGG)	1.07	-26
	1700	III (NGG)	0.79	
30 ppm-CaO	1200	I (NGG)	0.82	-20
	1200	III (AGG)	0.69	
200 ppm-SiO ₂	1200	I (NGG)	0.68	-10
	1200	III (AGG)	0.61	
30 ppm-CaO	1400	III (NGG)	1.02	0.1
	1400	IV+ (AGG)	1.02	
	1400	III (Basal plane)	0.77	
200 ppm-SiO ₂	1400	III (NGG)	0.65	9.5
	1400	IV (AGG)	0.71	
200 ppm-SiO ₂	1750	IV (NGG)	0.98	-1.7
	1750	V+ (AGG)	0.96	Г

Dillon et al. JACerS (2012)

Rohrer et al. continuing more detailed analysis

Comparing Complexions (Δ H & Δ S)

 $\Delta \gamma = \Delta \rho [RTIn(ga_{I}^{2}\nu_{I}^{*}/g\kappa_{II}a_{II}^{2}\nu_{II}^{*}) - T(\Delta S_{f,I}^{-}\Delta S_{f,II}^{-}) + (\Delta H_{f,I}^{-}-\Delta H_{f,II}^{-}) + (\Delta H_{m,I}^{-}-\Delta H_{m,II}^{-})]$ Simplifying Assumptions: $\Delta \gamma = \Delta \rho [-T(\Delta S_{I}^{-}-\Delta S_{II}^{-}) + (\Delta H_{I}^{-}-\Delta H_{II}^{-})]$

Check: $\gamma = \rho [RTIn(ga_b^2 v_b^*/g\kappa_l a_l^2 v_l^*) - T(\Delta S_l - \Delta S_b) + (\Delta H_l - \Delta H_b) + (P\Delta V_l - P\Delta V_b)]$

Au diffusivity-temperature dependence in the Cu(Bi) alloys

Cr^{3+} Diffusion in Al_2O_3

Continued Work: Obtaining D, γ , T_c in Al₂O₃ (then V*)

GB Diffusion Nanograin Alloys- Motivation

Kolobov et al. Russian J. Phys. (2008)

Wurschum, Herth, Brossmann, Advanced Engineering Materials (2003)

Cu of Varying Grain Size

	Average Grain Size (nm)			
Sample	X-ray	TEM		
		w/o twins	w/ twins	
Cu	15.0	~150	~20	
Cu-W	14.7	~30	~15	
Irrad. Cu-W	17.0	~80	~25	
773K Cu	23.5	~2000	~280	
1173K Cu	47.0	~4000	~550	

Au diffusion in Cu (Different G.S.'s)

Au diffusion in Cu (Different G.S.'s)

Irradiated then Au <u>diffusion at</u> 100 °C

FE Simulation Nanograin Diffusion

Grain Boundary Kirkendall Effect

Kirkendall Effect induced G.B. migration/lattice drift

A-B Inequality Diffusion $j_{A} = -\frac{D_{A}n_{A}}{kT}\frac{\partial\mu_{A}}{\partial y}; \quad j_{B} = -\frac{D_{B}n_{B}}{kT}\frac{\partial\mu_{B}}{\partial y},$ $\frac{\partial C_{B}}{\partial t} = D_{B}\frac{\partial^{2}C_{B}}{\partial y^{2}} + \frac{D_{B}C_{B}\Omega}{kT}\frac{\partial^{2}\sigma}{\partial y^{2}} + \frac{\Omega D_{B}}{kT}\frac{\partial C_{B}}{\partial y}\frac{\partial\sigma}{\partial y}$

Klinger, Acta Mater. 2011

Finite Element Simulation

Grain boundary diffusion in thin film model:

Depth (m)