Entropy and Enthalpy Effects on the Diffusivity of Different Grain Boundary Complexions

Shen J. Dillon University of Illinois Urbana-Champaign

Acknowledgements

- Students:
- Kaiping Tai

Lin Feng

- Funding: ONR MURI #
- N000141110678
- Salman Arshad NSF DMR#
 - 1005813

- Collaborators:
- M. Harmer
- G. Rohrer
- J. Luo
- J. Rickman
- H. Chan
- A. Rollett
- M. Widom

Overview

• Grain boundary complexions

Approach to approximating S and H for G.B.
 Measurements in Ni-Bi and Cu-Bi

- Diffusivity of nanograined samples
 - Is it different?
 - Does processing matter?

Grain Growth in Aluminum Oxide

Grain Growth Kinetic Types

S.J. Dillon, M. Tang, W.C. Carter, M.P. Harmer, Acta Mater. (2007)

Simple Interpretation of AGG Mechanism

Simple Thermodynamic Model

Transition Driven by Energy Minimization

Doped and Undoped Alumina Annealed at Different Temperatures								
Chemistry	Temperature (°C)	Complexion	Relative energy	% energy change (complexion transition)				
Undoped	1400	II (NGG)	1.11					
•	2020	II (NGG)	1.08					
100 ppm-Nd_2O_3	1400	I (NGG)	0.95	-16				
	1400	III (AGG)	0.8					
$100 \text{ ppm-}Y_2O_3$	1400	I (NGG)	0.57	-46				
	1400	III (AGG)	0.31					
500 ppm-MgO	1400	I (NGG)	1.07	-26				
	1700	III (NGG)	0.79					
30 ppm-CaO	1200	I (NGG)	0.82	-20				
	1200	III (AGG)	0.69					
200 ppm-SiO ₂	1200	I (NGG)	0.68	-10				
	1200	III (AGG)	0.61					
30 ppm-CaO	1400	III (NGG)	1.02	0.1				
••	1400	IV+ (AGG)	1.02					
	1400	III (Basal plane)	0.77					
200 ppm-SiO ₂	1400	III (NGG)	0.65	9.5				
· · ·	1400	IV (AGG)	0.71					
200 ppm-SiO ₂	1750	IV (NGG)	0.98	-1.7				
** =	1750	V+ (AGG)	0.96	tio				

 Table I.
 The Mean Relative Energies of Different Grain-Boundary Complexions Occurring as Normal and Abnormal Grains in Doped and Undoped Alumina Annealed at Different Temperatures

2 μm

Relative Contributions? $\gamma = H^{ex} - TS^{ex}$

Borisov Model: Linking Thermos & Kinetics

 $D=ga^{2}C_{v}\Gamma \qquad C_{v}=exp(\Delta S_{f}/k)(-\Delta H_{f}/kT) \qquad \Gamma=v^{*}exp(-\Delta H_{m}/kT)$

Assumption: $D_b = ga_o^2 v^* exp[-(\Delta G_l - \rho \gamma')/kT]$ Remember $\rho \gamma' = \Delta \overline{G}_b - \Delta \overline{G}_l$

General Predictions of Borisov Model

2 Simple Model Systems

Luoet al. Science (2011)

Kundu et al. Scripta Mater. (2012)

Prior Work on Cu-Bi

Ŵ

Chemical Diffusion into Bi doped Ni/Cu

Entropy Difference between Complexions

K. Tai et al. J. Appl. Phys. In Press

Comparison w/ Related Measurements

Olmstead et al. Acta Mater. (2009)

Chemistry	Complexion	Relative energy	% energy change (complexion transition)
Undoped	II (NGG)	1.11	
	II (NGG)	1.08	
$100 \text{ ppm-Nd}_2\text{O}_3$	I (NGG)	0.95	-16
11 2 3	III (AGG)	0.8	
$100 \text{ ppm-} Y_2O_3$	I (NGG)	0.57	-46
	III (AGG)	0.31	
500 ppm-MgO	I (NGG)	1.07	-26
	III (NGĠ)	0.79	
30 ppm-CaO	I (NGG)	0.82	-20
	III (AGG)	0.69	
200 ppm-SiO_2	I (NGG)	0.68	-10
	III (AGG)	0.61	

Dillon et al. JACerS 2010

GB Diffusion in Nanograin Alloys- Motivation

Kolobov et al. Russian J. Phys. (2008)

Wurschum, Herth, Brossmann, Advanced Engineering Materials (2003)

Cu Thin Films of Varying Grain Size

	Average Grain Size (nm)			
Sample	X-ray	TEM		
		w/o twins	w/ twins	
Cu	15.0	~150	~20	
Cu-W	14.7	~30	~15	
Irrad. Cu-W	17.0	~80	~25	
773K Cu	23.5	~2000	~280	
1173K Cu	47.0	~4000	~550	

K. Tai et al. Acta Mater. (2013)

Au diffusion in Cu (Different G.S.'s)

Au diffusion in Cu (Different G.S.'s)

Irradiated then Au diffusion at 100 °C

50 nm

Au diffusion in Cu (Different G.S.'s)

Results of Au G.B. Diffusion in Cu

K. Tai et al. Acta Mater. (2013)

*Ref. Surholt, Mishin, Herzig, Phys. Rev. B (1994).

Conclusions

- Significant entropy contribution, ~4-8k, associated with G.B. complexion transitions
- The excess entropy is manifest as enhanced diffusivity / G.B. mobility
- G.S. effect on diffusivity weak on thin film samples
- Thermal relaxations are qualitatively 'rapid' at temperatures where vacancy hops active